One of the goals of cognitive linguistics is to establish how language is organized within the individual’s mind. In this sense, two of the key questions the field seeks to answer are:

(i) To what extent can language be seen as a distinct, integrated system within the frame of human cognition?
(ii) Which functionally autonomous subsystems does language comprise?

Depending on their theoretical affiliations and concerns, researchers may turn to different sources of insight to model the cognitive architecture of linguistic systems. Some tend to invoke formal a priori arguments (e.g., Chomsky 1986); there are those who make use of analytical data (e.g., Lakoff 1987); others rely on behavioral experiments (e.g., Kolers 1968); still others draw upon clinical evidence (e.g., Paradis 1989, 2001). Focusing on the latter source, the present paper aims at answering the abovementioned questions by highlighting some well-established facts revealed by aphasiological double dissociations. Succinctly, double dissociations are patterns detected whenever a lesion in a brain area A produces deficit X but not Y, while a lesion in area B produces deficit Y but not X. It is well known that brain-lesion studies are not enough to localize specific areas subserving language functions at the neurological level (Grodzinsky 2002). However, they do provide a firm albeit partial fact-base relevant to all cognitive models of language, be they neurologically-oriented or not (cf. Sévigny and Humphreys 2007). Specifically, aphasiological double dissociations prove that:

(a) Language is an integrated system within an individual’s cognitive system.
(b) It comprises several subsystems which are functionally autonomous.
(c) No single subsystem is indispensable for the operation of the remaining of the system—although an impaired subsystem tends to produce dysfunctions in others.
(d) The subsystems of language constitute vast overlapping networks rather than discrete modules.

Since these findings, as predicated above, relate to cognitive architecture rather than cerebral localization, they are presently claimed to be relevant to both neurologically-oriented and non-neurologically-oriented mentalistic models of language.